

Andy Shih

Dorsa Sadigh

Stefano Ermon

Temperature Scaling

Temperature Scaling

Temperature Scaling

temp: 1.0

temp: 1.0

temp: 0.5

temp: 1.0

temp: 0.0

More Likely Samples

When T < 1, we bias sampling towards high likelihood regions

$$\log p_T(x) = \log p(x)/T - \log Z_{p_T}$$

When T=0, we compute argmax

More Likely Samples

When T < 1, we bias sampling towards high likelihood regions

$$\log p_T(x) = \log p(x)/T - \log Z_{p_T}$$

When T=0, we compute argmax

But...

But current LMs temperature scale one token at a time...

But current LMs temperature scale one token at a time...

But current LMs temperature scale one token at a time...

But current LMs temperature scale one token at a time...

$$\log p_T(x) \neq \sum_i \log p_T^{\text{myopic}}(x_i|x_{< i})$$

But current LMs temperature scale one token at a time...

$$\log p_T(x) \neq \sum_i \log p_T^{\text{myopic}}(x_i|x_{< i})$$

Pitfall of Myopic Temperature Scaling

Pitfall of Myopic Temperature Scaling

Pitfall of Myopic Temperature Scaling

Non-myopic Temperature Scaling For Optimizing Long Sequences

$$\hat{p} \qquad p$$

data model

Want: $\log p_T(x) = \log p(x)/T - \log Z_{p_T}$

$$\hat{p}$$
 p q_T data model temperature scaled model

Want:
$$\log p_T(x) = \log p(x)/T - \log Z_{p_T}$$

$$\hat{p}$$
 p q_T data model distill temperature scaled model

Want:
$$\log p_T(x) = \log p(x)/T - \log Z_{p_T}$$

Objective:
$$D_{KL}(p_T||q_T) = \mathbb{E}_{x \sim p_T} \left[\frac{\log p(x)}{T} - \log q_T(x) \right] - \log Z_{p_T}$$

$$\hat{p}$$
 p q_T data model temperature scaled model

Want:
$$\log p_T(x) = \log p(x)/T - \log Z_{p_T}$$

Objective:
$$D_{KL}(p_T||q_T) = \mathbb{E}_{x \sim p_T} \left[\frac{\log p(x)}{T} - \log q_T(x) \right] - \log Z_{p_T}$$

Objective:
$$-\mathbb{E}_{x \sim p_T}[\log q_T(x)]$$

but sampling from p_T is hard

$$\hat{p}$$
 p q_T data model distill temperature scaled model

Objective:
$$-\mathbb{E}_{x \sim p_T}[\log q_T(x)]$$

$$-\mathbb{E}_{x \sim p} \frac{e^{\log p(x)/T - \log Z_{p_T}}}{p(x)} [\log q_T(x)] \longleftarrow \text{importance sampling}$$

$$-\mathbb{E}_{x \sim p} \exp(\frac{1 - T}{T} \log p(x)) [\log q_T(x)]$$

Non-myopic

Applicable to all likelihood-based models

Objective:
$$-\mathbb{E}_{x \sim \hat{p}} \exp(\frac{1-T}{T} \log p(x)) [\log q_T(x)]$$

Learnable Baseline

$$-\mathbb{E}_{x \sim p} \frac{e^{\log p(x)/T - \log Z_{p_T}}}{p(x)} [\log q_T(x)]$$

multiplicative constant

Learnable Baseline

multiplicative constant
$$-\mathbb{E}_{x\sim p}\frac{e^{\log p(x)/T-b}}{p(x)}[\log q_T(x)]$$

Learnable Baseline

$$-\mathbb{E}_{x\sim p}\frac{e^{\log p(x)/T-b}}{p(x)}[\log q_T(x)] \qquad b=\frac{1}{|\mathcal{D}|}\sum_{x\in\mathcal{D}}\frac{1-T}{T}\log p(x)$$

Learnable Baseline

$$-\mathbb{E}_{x\sim p}\frac{e^{\log p(x)/T-b}}{p(x)}[\log q_T(x)] \qquad b=\frac{1}{|\mathcal{D}|}\sum_{x\in\mathcal{D}}\frac{1-T}{T}\log p(x)$$

Suffix likelihood and Index-dependent Baseline (for AR models)

doing today
$$b(i) = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \frac{1 - T}{T} \log p(x_{\geq i} | x_{< i})$$

Variance Reduction: the messy

Weight clipping

CLIP
$$\Big(\exp(\frac{1-T}{T}\log p(x)-b),c\Big)$$
 clip c

Variance Reduction: the messy

Weight clipping

CLIP
$$\left(\exp(\frac{1-T}{T}\log p(x)-b),c\right)$$
 clip c

Horizon clipping (for AR models)

$$-\mathbb{E}_{x \sim \hat{p}} \exp\left(\frac{1-T}{T} \log p(x_{\geq i}|x_{< i}) - b(i)\right) \left[\log q_T(x_{\geq i}|x_{< i})\right]$$

 $x \sim \chi$

how	are	you	doing	today
-----	-----	-----	-------	-------

$$-\mathbb{E}_{x \sim \hat{p}} \exp(\frac{1 - T}{T} \log p(x_{\geq i} | x_{< i}) - b(i)) [\log q_T(x_{\geq i} | x_{< i})]$$

 $x \sim \hat{p}$

 $\log p(x_i|x_{< i})$

how	are	you	doing	today
-2	-1	-3	-1	-1

$$-\mathbb{E}_{x \sim \hat{p}} \exp(\frac{1 - T}{T} \log p(x_{\geq i} | x_{< i}) - b(i)) [\log q_T(x_{\geq i} | x_{< i})]$$

 $x \sim \hat{p}$

 $\log p(x_i|x_{< i})$

 $\log p(x_{\geq i}|x_{< i})$

how	are	you	doing	today
-2	-1	-3	-1	-1
-8	-6	- 5	-2	-1

reverse cumulative sum

Ļ

$$-\mathbb{E}_{x \sim \hat{p}} \exp\left(\frac{1-T}{T} \log p(x_{\geq i}|x_{< i}) - b(i)\right) \left[\log q_T(x_{\geq i}|x_{< i})\right]$$

 $x \sim \hat{p}$

 $\log p(x_i|x_{< i})$

 $\log p(x_{\geq i}|x_{< i})$

 $\frac{1-T}{T}\log p(x_{\geq i}|x_{\leq i})$

how	are	you	doing	today	
-2	-1	-3	-1	-1	
-8	-6	- 5	-2	-1	
-16	-12	-10	-4	-2	

reverse cumulative sum

$$\frac{1-T}{T}$$

$$-\mathbb{E}_{x \sim \hat{p}} \exp(\frac{1 - T}{T} \log p(x_{\geq i} | x_{< i}) - b(i)) [\log q_T(x_{\geq i} | x_{< i})]$$

 $x \sim \hat{p}$

 $\log p(x_i|x_{< i})$

 $\log p(x_{\geq i}|x_{< i})$

 $\frac{1-T}{T}\log p(x_{\geq i}|x_{< i})$

 $\frac{1-T}{T}\log p(x_{\geq i}|x_{< i}) - b(i)$

how	are	you	doing	today	
-2	-1	-3	-1	-1	
-8	-6	-5	-2	-1	
-16	-12	-10	-4	-2	
-1	0	-1	+2	+1	

reverse cumulative sum

$$\frac{1-T}{T}$$

add baseline e.g. 3 * len(suffix

Diffusion Image Models

Baseline: pseudo-temp reduce noise of reverse diffusion

Better likelihood vs diversity tradeoff!

long horizon temperature scaling

Temperature extrapolation!

Better likelihood vs diversity tradeoff!

```
'the proces', ' internati', 'ne nine fi', 'n the latt', ' the const', ' and the m', 'is the fir', 'e three fi', ' of the ma',
```

```
Likelihood: -0.97
Diversity: Higher
```


Likelihood: -1.05 Diversity: Lower

Autoregressive Language Models

Autoregressive Language Models

Analogy Multiple Choice

Question: Please choose the word pair that is most analogous to "Athens Greece". Choices: "Moscow Japan", "Rome Italy", "Moscow Pakistan", "Moscow Australia" Answer:

Question: Please choose the word pair that is most analogous to "boy girl".

Choices: "grandfather grandmother", "grandfather bride", "son grandma", "grandfather sisters"

Answer:

Autoregressive Language Models

Analogy Multiple Choice

model	gpt2 small		gpt2 medium		gpt2 large					
$\underline{\qquad} \text{myopic } T$	1.0	0.5	0.0	1.0	0.5	0.0	1.0	0.5	0.0	_
LHTS $T = 0.9$	0.177	0.224	0.230	0.225	0.270	0.275	0.249	0.310	0.317	
pretrained	0.189	0.267	0.275	0.200	0.262	0.264	0.203	0.279	0.290	1
partition (Quark)	0.137	0.221	0.233	0.197	0.264	0.270	0.213	0.279	0.285	impr

Long Horizon Temperature Scaling

Andy Shih

Dorsa Sadigh

Stefano Ermon

