Parallel Sampling of Diffusion Models

with Suneel, Stefano, Dorsa, Nima

$$q(\mathbf{x}_i|\mathbf{x}_{i-1}) = \mathcal{N}(\mathbf{x}_i; \sqrt{1-\beta_i}\mathbf{x}_{i-1}, \beta_i \mathbf{I})$$

adding noise

$$q(\mathbf{x}_i|\mathbf{x}_{i-1}) = \mathcal{N}(\mathbf{x}_i; \sqrt{1-\beta_i}\mathbf{x}_{i-1}, \beta_i\mathbf{I})$$

adding noise

$$\mathbf{x}_i = \sqrt{1 - \beta_i} \mathbf{x}_{i-1} + \sqrt{\beta_i} \mathbf{z}_{i-1}, \quad i = 1, \dots, N$$

$$d\boldsymbol{x}_t = f(t)\boldsymbol{x}_t dt + g(t)d\boldsymbol{w}_t$$

like an SDE!

[Song 2021]

$$d\mathbf{x}_t = f(t)\mathbf{x}_t dt + g(t)d\mathbf{w}_t$$

f and g are design choices

[Song 2021]

$$d\boldsymbol{x}_t = [f(t)\boldsymbol{x}_t - g^2(t)\nabla_{\boldsymbol{x}}\log q_t(\boldsymbol{x}_t)]dt + g(t)d\bar{\boldsymbol{w}}_t$$
[Anderson 1982]

can reverse in general, still an SDE

	DDPM [Ho 2020]		
Sample Method	SDE (euler maruyama)		
Speed	Slow 1000 steps		
Quality	Best		

if we only care about marginals (the white lines)

[Song 2021]

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = f(t)\boldsymbol{x}_t - \frac{1}{2}g^2(t)\nabla_{\boldsymbol{x}}\log q_t(\boldsymbol{x}_t)$$

can also write as ODE!

[Maoutsa 2020]

	DDPM [Ho 2020]	DDIM [Song 2021]	DPMSolver [Lu 2022]	
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	
Speed	Slow 1000 steps	Slow 1000 steps	Slow 1000 steps	
Quality	Best			

riemann: trapezoidal:: euler: heun

higher-order integration rule (heun's method)

	DDPM [Ho 2020]	DDIM [Song 2021]	DPMSolver [Lu 2022]	
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	
Speed	Slow 1000 steps	Slow 1000 steps	Slow 1000 steps	
Quality	Best			

	DDPM [Ho 2020]	DDIM [Song 2021]	DPMSolver [Lu 2022]	
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	
Speed	Slow 1000 steps	Fast 50 steps	Fast 50 steps	
Quality	Best	Good	Good	

trade quality for speed

trade quality for speed

	DDPM [Ho 2020]	DDIM [Song 2021]	DPMSolver [Lu 2022]	ParaDiGMS [our method!]
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	ODE (picard+ euler/heun)
Speed	Slow 1000 steps	Fast 50 steps	Fast 50 steps	Fast 1000 steps
Quality	Best	Good	Good	Best
		trade quality	trade quality	trade compute

for speed

for speed

for speed

Preview of results

robosuite square 200 evaluation episodes	Method	DDPM	DDIM	DPE-solver
Base Sampler	Samples per Second	10.8 ± 0.6	70 ± 4	69 ± 4
ParaDiGM	Samples per Second	40 ± 2 (3.7x faster)	112 ± 7 (1.6x faster)	122 ± 7 (1.8x faster)

stable diffusion	Method	DDPM	DDIM	DDIM
Base Sampler	Samples per Minute	1.2	5.8	5.8
ParaDiGM	Samples per Minute	3.7 (3.1x faster)	10.4 (1.8x faster)	10.4 (1.8x faster)

No drop in sample quality!!

we want to solve this (white lines) fast!

solve this ODE (only pointwise gradient information)

solve this ODE (only pointwise gradient information) discretize, take one small step at a time

Picard-Lindelöf

Solve (analytically) an ODE by iterating until convergence

$$\varphi_{k+1}(t) = y_0 + \int_{t_0}^t f(s, \varphi_k(s)) ds$$

Picard + Euler

Solve discretized ODE by iterating until convergence

$$\varphi_{k+1}(t) = y_0 + \int_{t_0}^t f(s, \varphi_k(s)) ds$$

$$\varphi_{k+1}(\frac{j}{N}) = y_0 + \frac{1}{N} \sum_{i=0}^{j-1} f(\frac{i}{N}, \varphi_k(\frac{i}{N}))$$

solve this ODE (only pointwise gradient information)

solve this ODE (only pointwise gradient information) discretize, make a guess everywhere, iterate

$$\varphi_{k+1}(\frac{j}{N}) = y_0 + \frac{1}{N} \sum_{i=0}^{j-1} f(\frac{i}{N}, \varphi_k(\frac{i}{N}))$$

solve this ODE (only pointwise gradient information) discretize, make a guess everywhere, iterate...until convergence

$$\varphi_{k+1}(\frac{j}{N}) = y_0 + \frac{1}{N} \sum_{i=0}^{j-1} f(\frac{i}{N}, \varphi_k(\frac{i}{N}))$$

Practical Issues

- Isn't that (number of iterations) * (number of steps)? Seems even slower!
 - Parallel computation! (GPUs, multi-GPUs)

Practical Issues

- Isn't that (number of iterations) * (number of steps)? Seems even slower!
 - Parallel computation! (GPUs, multi-GPUs)

- Out of memory? (1000x memory)
 - batching!

Practical Issues

- Isn't that (number of iterations) * (number of steps)? Seems even slower!
 - Parallel computation! (GPUs, multi-GPUs)

- Out of memory? (1000x memory)
 - batching!
- Approximate method?
 - Yes, but in practice no quality degradation (w.r.t. standard metrics)!

• Best explained with a GIF

- Window size
 - Can make small to fit on GPU
 - Even if no memory issues, still a good idea to batch!
 - Initial guesses at tail end of ODE is poor anyways, don't bother with them

- Tolerance (when to slide forward)
 - too low = not much speedup, too high = risk of degradation
 - 0.1 * noise gives 2-4x speedup with no measurable degradation

- Tolerance (when to slide forward)
 - too low = not much speedup, too high = risk of degradation
 - 0.1 * noise gives 2-4x speedup with no measurable degradation

If
$$||\hat{\boldsymbol{x}}_i - \boldsymbol{x}_i||_2^2 \le 4\epsilon^2 \sigma_i^2/b^2$$

Then
$$D_{TV}(\mathcal{N}(\hat{\boldsymbol{x}}_i, \sigma_i^2 \boldsymbol{I}) \mid\mid \mathcal{N}(\boldsymbol{x}_i, \sigma_i^2 \boldsymbol{I})) \leq \sqrt{\frac{1}{2}} D_{KL}(\mathcal{N}(\hat{\boldsymbol{x}}_i, \sigma_i^2 \boldsymbol{I}) \mid\mid \mathcal{N}(\boldsymbol{x}_i, \sigma_i^2 \boldsymbol{I}))$$
$$= \sqrt{\frac{||\hat{\boldsymbol{x}}_i - \boldsymbol{x}_i||_2^2}{4\sigma_i^2}} \leq \frac{\epsilon}{b}$$

So chance of faithful sample is $c = (1 - \frac{\epsilon}{b})^b \ge 1 - \epsilon$

this is worst-case, too conservative in practice

		DDPM	=	ParaDDPM	Picard + SDE
ParaDiGMS	+	DDIM	=	ParaDDIM	Picard + Euler
		DPMSolver	=	ParaDPMSolver	Picard + Heun

		DDPM	=	ParaDDPM	Picard + SDE
ParaDiGMS	+	DDIM	=	ParaDDIM	Picard + Euler
		DPMSolver	=	ParaDPMSolver	Picard + Heun

		DDPM	=	ParaDDPM	Picard + ODE
ParaDiGMS	+	DDIM	=	ParaDDIM	Picard + Euler
		DPMSolver	=	ParaDPMSolver	Picard + Heun

just pre-sample variance to remove stochasticity

Algorithm 1: ParaDiGMS: parallel sampling via Picard iteration over a sliding window

Input: Diffusion model p_{θ} with variances σ_t^2 , tolerance τ , batch window size p, dimension D **Output:** A sample from p_{θ}

```
1 t, k \leftarrow 0, 0
 2 z_i \sim \mathcal{N}(\mathbf{0}, \sigma_i^2 \mathbf{I}) \quad \forall i \in [0, T)
                                                                                                                                            // Up-front sampling of noise (for SDE)
 x_0^k \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \qquad x_i^k \leftarrow x_0^k \quad \forall i \in [1, p]
                                                                                                                                               // Sample initial condition from prior
 4 while t < T do
         \mathbf{y}_{t+j} \leftarrow p_{\theta}(\mathbf{x}_{t+j}^k, t+j) - \mathbf{x}_{t+j}^k \quad \forall j \in [0, p)
                                                                                                                                                             // Compute drifts in parallel
        x_{t+i+1}^{k+1} \leftarrow x_t^k + \sum_{i=t}^{t+j} y_i + \sum_{i=t}^{t+j} z_i \quad \forall j \in [0, p)
                                                                                                                                                           // Discretized Picard iteration
         error \leftarrow \{\frac{1}{D} || \mathbf{x}_{t+i}^{k+1} - \mathbf{x}_{t+i}^{k} ||^2 : \forall j \in [1, p) \}
  7
                                                                                                                                                // Store error value for each timestep
         stride \leftarrow \min \left( \{ j : \text{error}_j > \tau \sigma_j^2 \} \cup \{ p \} \right)
 8
                                                                                                                                          // Slide forward until we reach tolerance
          x_{t+v+i}^{k+1} \leftarrow x_{t+v}^{k+1} \quad \forall j \in [1, \text{stride}]
  9
                                                                                                                         // Initialize new points that the window now covers
           t \leftarrow t + \text{stride}, \quad k \leftarrow k + 1
10
         p \leftarrow \min(p, T - t)
12 return x_T^k
```


Figure 1: Computation graph of sequential sampling Figure 2: Computation graph of Picard iterations, by evaluating $p_{\theta}(x_{t+1} \mid x_t)$, from the perspective of which introduces skip dependencies. reverse time.

	DDPM [Ho 2020]	DDIM [Song 2021]	DPMSolver [Lu 2022]	ParaDiGMS [our method!]
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	ODE (picard+ euler/heun)
Speed	Slow 1000 steps	Fast 50 steps	Fast 50 steps	Fast 1000 steps
Quality	Best	Good	Good	Best
		trade quality	trade quality	trade compute

for speed

for speed

for speed

Experiments

square

push t

kitchen

stable diffusion v2

LSUN church

Square

NVIDIA a40 GPU robosuite square task	Method	DDPM	DDIM	DPE-solver	
400k training steps 200 evaluation episodes	Description	100 step reverse SDE	15 step reverse ODE	15 step reverse ODE with 3-point integration rule	
Base Sampler	Reward	0.85 ± 0.03	0.83 ± 0.03	0.85 ± 0.03	
	Function Evaluations	100	15	15	
	Samples per Second	10.8 ± 0.6	70 ± 4	69 ± 4	

Square

NVIDIA a40 GPU robosuite square task 400k training steps 200 evaluation episodes	Method	DDPM	DDIM	DPE-solver	
	Description	100 step reverse SDE	15 step reverse ODE	15 step reverse ODE with 3-point integration rule	
	Reward	0.85 ± 0.03	0.83 ± 0.03	0.85 ± 0.03	
Base Sampler	Function Evaluations	100	15	15	
	Samples per Second	10.8 ± 0.6	70 ± 4	69 ± 4	
	Reward	0.85 ± 0.03	0.85 ± 0.03	0.83 ± 0.03	
ParaDiGM (Tolorance:	Function Evaluations	~430	~60	~50	
(Tolerance: 0.1 x noise)	Parallel Iterations	~27	~8	~7	
	Samples per Second	40 ± 2 (3.7x faster)	112 ± 7 (1.6x faster)	122 ± 7 (1.8x faster)	

No drop in sample quality!

Faster!

Push T

NVIDIA a40 GPU push-t task	Method	DDPM	DDIM	DPE-solver	
400k training steps 200 evaluation episodes	Description	100 step reverse SDE	15 step reverse ODE	15 step reverse ODE with 3-point integration rule	
	Reward	0.81 ± 0.03	0.78 ± 0.03	0.79 ± 0.03	
Base Sampler	Function Evaluations	100	15	15	
	Samples per Second	9.3 ± 0.6	71 ± 4	71 ± 4	
	Reward	0.85 ± 0.03	0.77 ± 0.03	0.82 ± 0.03	
ParaDiGM (Tolerance:	Function Evaluations	~430	~60	~50	
0.1 x noise)	Parallel Iterations	~27	~8	~7	
	Samples per Second	36 ± 2 (3.9x faster)	118 ± 7 (1.7x faster)	140 ± 7 (2.0x faster)	

No drop in sample quality!

Faster!

Stable Diffusion v2

- 768 x 768 images
- Diffusion in latent space 4 x 96 x 96

Stable Diffusion v2

- 768 x 768 images
- Diffusion in latent space 4 x 96 x 96

painting"

during a baseball game"

water at night"

(a) "a beautiful castle, matte (b) "a batter swings at a pitch (c) "several sail boats in the (d) "a grey suitcase sits in front of a couch"

	Sequential			ParaDiGMS				
StableDiffusion-v2	Model Evals	CLIP Score	Time per Sample	Model Evals	Parallel Iters	CLIP Score	Time per Sample	Speedup
	1							<u> </u>
DDPM	1000	32.1	50.0s	2040	44	32.1	16.2s	3.1x
DDIM	200	31.9	10.3s	425	16	31.9	5.8s	1.8x
DPMSolver	200	31.7	10.3s	411	16	31.7	5.8s	1.8x

LSUN Church/Bedroom

- 256 x 256 images
- Diffusion in pixel space 3 x 256 x 256

LSUN Church/Bedroom

- 256 x 256 images
- Diffusion in pixel space 3 x 256 x 256

	Sequential			ParaDiGMS				
LSUN Church	Model Evals	FID Score	Time per Sample	Model Evals	Parallel Iters	FID Score	Time per Sample	Speedup
DDPM DDIM	1000 500	12.8 15.7	24.0s 12.2s	2556 1502	42 42	12.9 15.7	8.2s 6.3s	2.9x 1.9x

	DDPM [Ho 2020]	DDIM [Song 2021]	DPMSolver [Lu 2022]	ParaDiGMS [our method!]
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	ODE (picard+ euler/heun)
Speed	Slow 1000 steps	Fast 50 steps	Fast 50 steps	Fast 1000 steps
Quality	Best	Good	Good	Best
		trade quality	trade quality	trade compute

for speed

for speed

for speed

ParaDiGMS

Parallel Diffusion Generative Model Sampler instead of *trading quality for speed* we enable *trading compute for speed*

Can be combined with other sampling methods for 2-4x speedup (ParaDDPM, ParaDDIM, ParaDPMSolver)

ParaDiGMS

Parallel Diffusion Generative Model Sampler instead of *trading quality for speed* we enable *trading compute for speed*

Can be combined with other sampling methods for 2-4x speedup (ParaDDPM, ParaDDIM, ParaDPMSolver)

single GPU for diffusion-policy! multi GPU for image diffusion models