

Parallel Sampling of Diffusion Models

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari

andyshih@cs.stanford.edu

[Song 2021]

$$d\mathbf{x}_t = [f(t)\mathbf{x}_t - g^2(t)\nabla_{\mathbf{x}}\log q_t(\mathbf{x}_t)]dt + g(t)d\bar{\mathbf{w}}_t$$

[Anderson 1982]

$$rac{\mathrm{d}oldsymbol{x}_t}{\mathrm{d}t} = f(t)oldsymbol{x}_t - rac{1}{2}g^2(t)
abla_{oldsymbol{x}}\log q_t(oldsymbol{x}_t)$$

can also write as ODE

[Maoutsa 2020]

	DDPM	DDIM	DPMSolver	ParaDiGMS
	[Ho 2020]	[Song 2021]	[Lu 2022]	[ours]
Sample Method	SDE (euler maruyama)	ODE (euler)	ODE (heun)	ODE (picard+ euler/heun)
Speed	Slow	Fast	Fast	Fast
	1000 steps	50 steps	50 steps	1000 steps
Quality	Best	Good	Good	Best

trade quality trade compute for speed for speed for speed

Picard Iterations

Solve discretized ODE by iterating until convergence

$$\varphi_{k+1}(t) = y_0 + \int_{t_0}^t f(s, \varphi_k(s)) ds \qquad \text{continuous}$$

$$\varphi_{k+1}(\frac{j}{N}) = y_0 + \frac{1}{N} \sum_{i=0}^{j-1} f(\frac{i}{N}, \varphi_k(\frac{i}{N}))$$
 discrete

Practical Issues

Batching: process k timesteps at a time out of memory? with sliding window

approximate?

No measurable degradation on standard benchmarks

$$\|\boldsymbol{x}_t^K - \boldsymbol{x}_t^{K-1}\|^2 \le 4\epsilon^2 \sigma_t^2 / T^2$$

Then
$$D_{\text{TV}}(\mathcal{N}(\boldsymbol{x}_t^K, \sigma_t^2 \boldsymbol{I}) \parallel \mathcal{N}(\boldsymbol{x}_t^{\star}, \sigma_t^2 \boldsymbol{I})) \leq \sqrt{\frac{1}{2}D_{\text{KL}}(\mathcal{N}(\boldsymbol{x}_t^K, \sigma_t^2 \boldsymbol{I}) \parallel \mathcal{N}(\boldsymbol{x}_t^{\star}, \sigma_t^2 \boldsymbol{I}))}$$

We can bound total
$$= \sqrt{\frac{\|\boldsymbol{x}_t^K - \boldsymbol{x}_t^{\star}\|^2}{4\sigma_t^2}} \leq \sqrt{\frac{\|\boldsymbol{x}_t^K - \boldsymbol{x}_t^{K-1}\|^2}{4\sigma_t^2}} \leq \frac{\epsilon}{T}$$

We can bound total variation distance

3x speedup!

			Sequential						
	Franka Kitchen	Model Evals	Reward	Time per Episode	Model Evals	Parallel Iters	Reward	Time per Episode	Speedup
Robotics	DDPM	100	0.85 ± 0.03	112s	390	25	0.84 ± 0.03	33.3s	3.4x
	DDIM	15	0.80 ± 0.03	16.9s	47	7	0.80 ± 0.03	9.45s	1.8x
	DPMSolver	15	0.79 ± 0.03	17.4s	41	6	0.80 ± 0.03	8.89s	2.0x

Latent **Image**

		Sequent	ıal					
StableDiffusion-v2	Model Evals	CLIP Score	Time per Sample	Model Evals	Parallel Iters	CLIP Score	Time per Sample	Speedup
DDPM	1000	32.1	50.0s	2040	44	32.1	16.2s	3.1x
DDIM	200	31.9	10.3s	425	16	31.9	5.8s	1.8x
DPMSolver	200	31.7	10.3s	411	16	31.7	5.8s	1.8x

Pixel Image

LSUN Church	Model	FID	Time per	Model	Parallel	FID	Time per	Speedup
	Evals	Score	Sample	Evals	Iters	Score	Sample	Speedup
DDPM	1000	12.8	24.0s	2556	42	12.9	8.2s	2.9x
DDIM	500	15.7	12.2s	1502	42	15.7	6.3s	1.9x