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Multiagent collaboration requires knowing 2 things:

1. How to be good at the task

2. How to
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For Player 1

Rule: Placing red block correctly

Signaling location of blue block
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Multiagent collaboration requires knowing 2 things:

1. How to be good at the task Rules

2. How to



Shared representation that
breaks symmetry between equally optimal strategies

(developed over repeated interactions)



Generalization: New Partner (Fixed Task)
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We need a modular architecture
to work with new combinations of partners and tasks.
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Modular Architecture

Multiply the
action distributions
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Modular Architecture
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Collaborative Contextual Bandit

Task 1
aj Qs a3z aq

In each context (A and B), each partner independently picks one of the green boxes.
Scores a point if the same green box is chosen.
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In each context (A and B), each partner independently picks one of the green boxes.
Scores a point if the same green box is chosen.



Collaborative Contextual Bandit

Task 1 Conventions Conventions carried
a1 0o a3ay on Task 1 over to Task 2
A A @ A Q
B B QO B Q

In each context (A and B), each partner independently picks one of the green boxes.
Scores a point if the same green box is chosen.



Human Study
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In context A, there is only one choice. No conventions needed.
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In context B, it is unclear how to carry over conventions.




Human Study
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In context C, conventions successfully carry over to test task.
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Takeaways
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Takeaways

Collaborative tasks involve a combination of rules and

Rules carry over to different ;

carry over to different tasks;

Learn separate composable representations for rules and

to quickly adapt to new tasks and



