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Variational Inference

Choice of ¢

Analytic optimization;

s 1 1 - mean field
O£ =2 x~q[ og p(x) — log g(x)] - structured mean field

sample ptimizatiOn:

- neural networks

Q/ continuous % discrete

[Zhang 2017] Stanford University
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Sampling — Discrete Settings

N ST . O/ S Each circle is a point in discrete space
R Larger circle = high probability mass
...... | e v
O
* No information "around” the samples
. --.,“- :“--.,“‘ :“--.,“‘ :“--.,“‘ ® Very high Variance

Cannot easily optimize!

------
““““

missing out on the big mode
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Discrete Settings

Choice of g

Analytic optimization;

_w

Avoid sampling - struetdred mean field

- sum product networks
Expressive distribution

Ic optimization:

Wetworks

Stanford University



Sum Product Networks
Proposal distribution ¢
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Sum Product Networks
Proposal distribution ¢
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Sum Product Networks
Proposal distribution ¢
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gradients compute analytically!
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Experiments
16x16 Ising Model
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Experiments

16x16 Ising Model
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Summary
Discrete settings: sampling %

Probabilistic Circuits (e.g. Sum Product Networks)

» Expressive family of distributions!
» Can compute gradients analytically — no sampling!

Thanks!

andyshih@cs.stanford.edu
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