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Abstract. We consider the problem of verifying the behavior of bina-
rized neural networks on some input region. We propose an Angluin-style
learning algorithm to compile a neural network on a given region into
an Ordered Binary Decision Diagram (OBDD), using a SAT solver as
an equivalence oracle. The OBDD allows us to efficiently answer a range
of verification queries, including counting, computing the probability of
counterexamples, and identifying common characteristics of counterex-
amples. We also present experimental results on verifying binarized neu-
ral networks that recognize images of handwritten digits.
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1 Introduction

Neural networks are used for a wide array of tasks, including speech recognition,
image classification, and language translation. They also power safety-critical
applications, such as autonomous driving, where humans need to understand
and formally verify the behavior of underlying neural networks. While recent
advancements have improved the performance and scale of neural networks, there
are not enough methods for providing formal guarantees about their behavior.
In addition, the intricate structure of a neural network makes it impractical to
reason about their behavior manually. This has sparked a recent line of research
that aims to automatically verify neural network properties [6, 20, 26, 28, 35, 36].

We propose in this paper an approach for verifying the properties of neural
networks, which is based on knowledge compilation [5, 11, 12, 29]. Our approach
applies to the class of neural networks with discrete inputs and output, but we
will highlight the special case of Binarized Neural Networks (BNNs) [14], which
have binary weights and activations at runtime, leading to space and computa-
tional efficiencies. BNNs have been shown to achieve comparable performance on
some standard datasets, compared to more traditional networks using floating-
point precision [14].

One particular property of BNNs that has been studied is robustness [23].
Users of a BNN can pinpoint a particular input instance x and ask for guarantees
on the behavior of the BNN for other inputs in the neighborhood of x, which
we call an input region, denoted by Sx. This has practical applications, e.g.,
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for image classification, where users expect an image of, say, a dog to remain
classified as a dog if only a few pixels are modified. Since the number of ways to
tweak an image is exponential in the number of modified pixels, it is impractical
to perform the verification by enumeration.

A method was recently proposed for detecting counterexamples in any in-
put region Sx encode-able as a CNF [26]. Our proposed approach pushes this
direction further by harnessing techniques from knowledge compilation, allow-
ing one to also reason about counterexamples. For example, we can efficiently
count the counterexamples in Sx, compute their probability, enumerate a subset
of them, and identify their common characteristics. Another useful query sup-
ported by our approach, the prime-implicant query, returns a subset of inputs
that, if fixed, will guarantee that the neural network output will stick even if we
vary the unfixed inputs [16, 31].

Using the example of image classification, our new techniques allow us to
perform reasoning on all images that are some pixels away from some target
image, say, of a dog. Whereas previous methods only tell us that it is possible to
classify another image in the neighborhood of the dog image as a cat, our new
method can determine how many neighborhood images are classified as cats and
identify key characteristics that are shared among all such images. Moreover, the
prime-implicant query identifies a minimal set of pixels in the dog image that
guarantees a correct classification even if we modify some of the unfixed pixels.

To reason about BNNs, we compile them into a tractable representation and
then apply verification queries to the compiled representation. The compilation
is done once per input region and, if successful, allows one to efficiently answer
a range of queries that are otherwise NP-hard [30].

We now give an overview of our compilation algorithm. We compile BNNs
into Ordered Binary Decision Diagrams (OBDDs), which are decision graphs
that are tractable for many queries and transformations due to an enforced vari-
able ordering [4, 12, 24, 33]. Let B be a BNN, and let BS represent the function
of B on S, an input region of interest. To obtain BS as an OBDD, we lever-
age an Angluin-style algorithm for learning the OBDD representation of BS
using standard membership and equivalence queries [1, 25]. First, we construct
a hypothesis OBDD and then iteratively call equivalence queries, adding OBDD
nodes until its output agrees with BS . To answer equivalence queries efficiently,
we encode the BNN and the hypothesis OBDD into a CNF, and require that
the region S can be encoded as a CNF as well. When the algorithm terminates,
it returns an OBDD D such that D(x) = B(x) : ∀x ∈ S, a notion related to
the Constrain operator on OBDDs [24]. We then verify properties of BNN B
by performing efficient verification queries on OBDD D.

Compared to the two main compilation paradigms of bottom-up and top-down
compilation,1 the Angluin-style learning algorithm is more similar to top-down

1 Bottom-up compilation constructs constants and literals of a knowledge base and
then composes them together using the Apply operation [11]. Top-down compilation
recursively conditions the knowledge base and then combines the recursive compila-
tions to obtain the final compilation [13, 27].
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approaches, in that it never creates unnecessary nodes [11]. The main feature that
distinguishes the Angluin-style learning algorithm from top-down approaches is
the support of incremental and anytime compilation. The Angluin-style learning
algorithm can slowly increase the region of interest, so that the compiled OBDD
of a smaller region can be used as the hypothesis OBDD for the compilation task
of a larger region, without starting over. We can essentially save our progress,
and build on it later if we decide the initial region is too small.

This paper is structured as follows. Section 2 provides an introduction to
BNNs and OBDDs. Section 3 describes the encodings of BNNs and OBDDs into
CNF. Section 4 goes over the Angluin-style learning algorithm, which is used by
our compilation algorithm in Section 5. We report experiments on the efficiency
of our compilation algorithm in Section 6, followed by a case study in Section 7.
We finally discuss related work in Section 8 and conclude in Section 9.

2 Background

In this section, we describe Binarized Neural Networks and Ordered Binary
Decision Diagrams in more detail.

2.1 Binarized Neural Networks

A Binarized Neural Network is a feed-forward neural network where the weights
and activations are binarized using {−1, 1}. A BNN is composed of internal
blocks and one output block. Internal blocks consist of three layers: a linear
transformation (LIN), batch normalization (BN), and binarization (BIN).

– The LIN layer has parameters a (weights) and b (bias). Given an input x,
this layer returns 〈a,x〉+ b.

– The BN layer has parameters µ (mean), σ (standard deviation), α (weight),
and γ (bias). Given an input y, this layer returns α(y−µσ ) + γ.

– The BIN layer returns the sign (1 or −1) of its input.

The output block consists of a LIN layer and an ARGMAX layer. The ARGMAX
layer picks the output class with the highest activation. More details regarding
these blocks and layers and their exact definitions is given by Narodytska et
al. [26]. For convenience we consider a BNN with outputs 0 or 1.

2.2 Ordered Binary Decision Diagrams

An Ordered Binary Decision Diagram (OBDD) is a tractable representation of
a Boolean function over variables X = X1, . . . , Xn [4, 24, 33]. An OBDD is a
rooted, directed acyclic graph with two sinks called the 1-sink and 0-sink. Every
node (except the sinks) in the OBDD is labeled with a variable Xi and has two
labeled outgoing edges: the 1-edge and the 0-edge. The labeling of the OBDD
nodes respects some global ordering of the variables X: if there is an edge from
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(b) OBDD with sinks {0, 1}.

Fig. 1: A BNN and its corresponding OBDD on four inputs. The two represen-
tations compute the same function.

a node labeled Xi to a node labeled Xj , then Xi must come before Xj in the
global ordering. To evaluate the OBDD on an instance x, start at the root node
of the OBDD. Let xi be the value of variable Xi of the current node. Repeatedly
follow the xi-edge of the current node, until a sink node is reached. Reaching the
1-sink means x is evaluated to 1 and reaching the 0-sink means x is evaluated
to 0 by the OBDD. Hence, an OBDD can be viewed as representing a function
f(X) that maps instances x into {0, 1}.

Consider the BNN in Figure 1a, which classifies a movie as a box-office success
or not. It has four binary inputs: A (Adapted Screenplay), G (Great Cinematog-
raphy), F (Famous Cast), and M (Marketing). The parameters of the BNN are
not shown, but it computes the truth table as shown in Table 1. The OBDD
in Figure 1b also computes the truth table in Table 1, so we can verify prop-
erties of the BNN by performing verification on the OBDD. We can examine,
for example, a movie that is an adapted screenplay, has great cinematography,
a famous cast, heavy marketing, and is classified as being a box office success.
This movie corresponds to input {A = 1, G = 1, F = 1,M = 1} and a classi-
fication of 1. Using the OBDD in Figure 1b we can deduce, in time linear in
the size of the OBDD, that the movie could have had poor cinematography and
low marketing, and would still be classified as being a box office success. In fact,
the partial input {A = 1, F = 1} completely determines that the movie will be
classified as being successful, regardless of how the remaining input is set. This
is an example of the many types of efficient verification queries that can be done
on an OBDD [31].

3 CNF Encodings

We next provide the encoding of BNNs and OBDDs into CNF, which will serve
an important role in our main compilation algorithm.
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Table 1: The Boolean function on the 16 possible inputs computed by the BNN
and OBDD in Figure 1.

A G F M f(x)

1 - - - - -
2 - - - + -
3 - - + - -
4 - - + + +
5 - + - - -
6 - + - + -
7 - + + - +
8 - + + + +

A G F M f(x)

9 + - - - -
10 + - - + -
11 + - + - +
12 + - + + +
13 + + - - -
14 + + - + -
15 + + + - +
16 + + + + +

3.1 BNN to CNF

We use the conversion given by Narodytska et al. [26]. An internal block of a
BNN consists of three layers: a linear transformation (LIN), batch normalization
(BN), and binarization (BIN). The LIN layer has parameters a (weights) and
b (bias). The BN layer has parameters µ (mean), σ (std), α (weight), and γ
(bias). Put together, the three layers of an internal block can be translated to
the following output function h(x) of a neuron on an input instance x [26].

h(x) = 1 ⇐⇒ 〈a,x〉 ≥ −σ
α
γ + µ− b

Since the weights a and input x are binarized as {−1, 1}, the above com-
putation reduces to a cardinality constraint of the form

∑m
i=1 li ≥ C, where

li ∈ {0, 1} and C ∈ R. This cardinality constraint can be encoded as a CNF.
The output block has a LIN layer followed by an ARGMAX layer, which can

be encoded using a similar technique. First, we encode a cardinality constraint
for all pairs of classes, which tells us the class that has a higher activation
function in the pairing. Then, we use a final set of cardinality constraints to
determine the class that was the winner in all of its pairings [26]. Since we
focus on neural networks with binary output classes in this paper, a single CNF
variable is enough to represent the output of the BNN.

The space complexity of this conversion is O(NC2), where N is the number of
neurons in the BNN and C is the constant from the above cardinality constraint.

3.2 OBDD to CNF

We convert an OBDD into a CNF using the well-known Tseitin transforma-
tion [32], which converts a Boolean circuit into a CNF. Consider an OBDD
node labelled by variable X. If the two children of this node compute Boolean
functions C0, C1, then the OBDD node computes the Boolean function R =
(C0 ∧¬X)∨ (C1 ∧X). We can then represent the Boolean function of this node
by the following five clauses:
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¬R ∨ C0 ∨X
¬R ∨ C1 ∨ ¬X
¬R ∨ C0 ∨ C1

R ∨ ¬C0 ∨X
R ∨ ¬C1 ∨ ¬X

Applying this conversion to all OBDD nodes leads to a CNF representation
of the Boolean function computed by the OBDD. The number of CNF clauses
produced by this conversion is 5N , where N is the number of OBDD nodes.

The above encodings allow us to convert a BNN into a CNF α and an OBDD
into a CNF β. Let X be the CNF variables corresponding to the BNN inputs and
O be the variable corresponding to its output. Then α∧x∧O will be satisfiable iff
the BNN outputs 1 under input x. Similarly, α∧x∧¬O will be satisfiable iff the
BNN outputs 0 under input x. Now let X be the CNF variables corresponding
to the OBDD variables and R be the variable we introduced for the OBDD root.
Then β ∧ x ∧ R will be satisfiable iff the OBDD outputs 1 under input x and
β ∧ x ∧ ¬R will be satisfiable iff the OBDD outputs 0 under input x.

When the BNN and the OBDD share the same inputs x, we can check for
their inequivalence with the formula φ = α∧β∧ (O∨R)∧ (¬O∨¬R) [26]. Then,
φ is satisfiable iff there is some instantiation of x such that (O∧¬R)∨ (¬O∧R)
(i.e. BNN and OBDD disagree).

4 Angluin-Style Exact Learning of Finite Automaton

In this section we describe Angluin’s algorithm for learning Deterministic Finite
Automata (DFA) [1]. The DFA learning algorithm has an adaptation for learning
OBDDs [25], which serves as the backbone for our neural network compilation
algorithm. DFAs and OBDDs are initimately related: a Complete OBDD (an
OBDD that does not skip variables [33]) is also a DFA (but a DFA is not nec-
essarily an OBDD).

We roughly summarize the exposition on the topic of learning DFAs from
the textbook by Kearns and Vazirani [21]. The learning algorithm falls under
the category of active learning where the algorithm can learn through experi-
mentation, as opposed to passive learning where the algorithm has no control
over the sample of examples. To learn the DFA for a function f , the learning
process requires access to oracles for two types of queries:

– Membership Queries: The learning process selects an instance x and the
oracle returns the value of f(x).

– Equivalence Queries: The learner submits a hypothesis automaton h. The
oracle tells the learner if h computes the correct function (i.e. h = f), oth-
erwise the oracle returns a counterexample x for which h(x) 6= f(x).

The main idea of the algorithm is as follows. Let S be the set of states of
a minimal DFA we want to learn. Recall that each state represents a distinct
equivalence class of input strings. At all times we keep a hypothesis DFA whose
states S? represent a partition of S. We iteratively refine the partition by splitting
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Fig. 2: Learning the finite automaton for the 3 mod 4 counter. Using the coun-
terexample 1101, we modify the hypothesis DFA into the updated DFA.

some partition element of S? into two, so that |S?| increases. When |S?| = |S|,
each element in the partition contains exactly one equivalence class from S, so
our hypothesis DFA computes the target DFA.

Initially, we start with a one-node hypothesis DFA with just one state, which
partitions all the states in S into one group. As long as our DFA is incorrect, we
will receive counterexamples from the equivalence query. Given a counterexample
e, we can simulate e on our hypothesis DFA and identify the first state s? for
which its following step in the simulation is provably incorrect. This can be done
efficiently by maintaining a binary classification tree, the details of which we
omit. We then refine the partition by splitting s? into two nodes. This process
repeats until we have learned all the states of S, at which point the equivalence
query gives no more counterexamples and our algorithm terminates.

Suppose we wish to learn a DFA on binary inputs for the 3 mod 4 counter f ,
and we currently have the hypothesis DFA h in Figure 2a and its binary classi-
fication tree in Figure 2c. Since h(1101) = 0 6= f(1101), we get the string 1101

as a counterexample. Using the binary classification tree along with membership
queries, the algorithm identifies the state λ in h as faulty, and splits it into two.
This generates the updated DFA in Figure 2b, which computes f correctly.

The automaton learning algorithm was adapted into an OBDD learning al-
gorithm by Nakamura [25]. This variation requires n equivalence queries and
6n2 + n log(m) membership queries, where n is the number of nodes in the final
OBDD and m is the number of variables in the OBDD.
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Algorithm 1 CompileBNN(B,X, S)

input: A Binarized Neural Network B with input variables X, and a CNF S encoding
an input region

output: An OBDD D computing the function of B on S

main:

1: α,O ← BNNToCNF(B,X)
2: D ← initial hypothesis OBDD
3: β,R← OBDDToCNF(D,X)
4: φ← α ∧ β ∧ (O ∨R) ∧ (¬O ∨ ¬R) ∧ S
5: while φ has a satisfying assignment s do
6: x← projection of s on X
7: D ← UpdateHypothesis(D,x)
8: β,R← OBDDToCNF(D,X)
9: φ← α ∧ β ∧ (O ∨R) ∧ (¬O ∨ ¬R) ∧ S

10: return D

5 BNN Compilation Algorithm

We now describe our main contribution: a compilation algorithm from a BNN
to an OBDD. Given a BNN B on n binary inputs and one binary output, we
wish to obtain an OBDD D that computes the function of B on a region S (i.e.
D(x) = B(x) : ∀x ∈ S). We require region S to be encoded as a CNF.

Algorithm 1 implements our proposal. The subroutines BNNToCNF and
OBDDToCNF perform the encodings described in Section 3. We encode the BNN B
as a CNF α with output variable O. Then, we start the OBDD learning algorithm
as described in Section 4 to learn the reduced OBDD representation of B. The
learning algorithm creates a hypothesis OBDD D, which we encode as a CNF β
with variable R representing the OBDD output. We set φ on Line 4 such that φ
has a satisfying assignment iff the current hypothesis OBDD D does not compute
the same function as BNN B on region S. While φ is satisfiable, we take the satis-
fying assignment and keep only the variables corresponding to the BNN/OBDD
inputs as our counterexample x. The subroutine UpdateHypothesis then edits
our hypothesis OBDD using counterexample x. Once we have an unsatisfiable φ,
we return the OBDD D with the guarantee that it computes the same function
as BNN B on S. Note that there are no guarantees on the output of OBDD D
on instances outside S. The number of iterations of the while loop is N , where
N is the number of nodes in the final output D.

In Algorithm 2 we propose the construction of an input region that cap-
tures all instances in the neighborhood of some instance x on n variables. More
specifically, Algorithm 2 takes in an instance x, a radius r, and outputs a CNF
S on variables X1, . . . , Xn. An instance x? is a satisfying assignment for S iff
the Hamming distance between x and x? is no greater than r. This becomes
a cardinality constraint, which can be encoded in many ways [2]. For ease of
exposition, we use an OBDD for the constraint and then convert it to CNF. In
the algorithm, node di,j stores the state with n − i variables processed and a
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Algorithm 2 r-RadiusDomain(x, r)

input: An input x = x1, . . . , xn and a radius r ≤ n
output: A CNF that encodes all instances x? such that h(x,x?) ≤ r, where h measures
the Hamming distance

main:

1: d← a 2D array with dimensions [0, n]× [0, r]
2: for j ← 0 to r do
3: d0,j ← >
4: for i← 1 to n do
5: for j ← 0 to r do
6: h← di−1,j

7: l← di−1,j−1 if j > 0 else ⊥
8: di,j ← OBDD node: label Xi, xi-child h, ¬xi-child l
9: return OBDDToCNF(dn,r,X)

current Hamming distance of r− j. On Line 8, the child edge of di,j that agrees
with xi points to di−1,j . The other child edge points to di−1,j−1 if j > 0, oth-
erwise it points to ⊥. By using S as an input for Algorithm 1, we can compile
an OBDD that exactly computes the function of a BNN for all instances close
to some instance of interest, measured by the number of differing features. The
time and space complexity of Algorithm 2 is O(nr).

To extend our algorithm into an anytime compilation algorithm, we start
with a small region of interest and increase its size over time. The compiled
OBDD D will compute the same function as B on this small region. To compile
the OBDD for a larger region, we can feed in D as the initial hypothesis OBDD
in Algorithm 1 on Line 2, without the need to build D from scratch. Then, we
can use the updated OBDD to verify the properties of B on the enlarged region.
We can continue to enlarge this region until it becomes {0, 1}n, at which point
S = > and the compiled OBDD computes the same function as B everywhere.

6 Experiments

In this section we present experiments on two types of neural networks:

– binarized neural networks (BNNs) [14], as described in Section 2. In partic-
ular, we assumed a fully-connected multi-layer feedforward architecture;

– convolutional neural networks (CNN), where we simply used step activations
instead of the more commonly used ReLU activations [7].2 In such a network,
if the network inputs are binary, then the inputs and outputs of all neurons
are binary (note that we do not use max-pooling in our experiments). Such
a network corresponds to a Boolean circuit, although in general it will not

2 We first train the network using sigmoid activations, and then at test time we replace
the sigmoid activations with step activations, while keeping the learned weights.
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be tractable. However, we can encode it as a CNF using the Tseitin trans-
formation, and use the same algorithm described in Section 5 to learn its
(tractable) OBDD.

We considered the USPS digits dataset, and binarized the inputs to get 16×16
black and white images [15]. We then trained our neural networks to distinguish
between digit ‘0’ images (false-class) and digit ‘8’ images (true-class). We also
tested on other pairs of digits, which gave similar results.

– We trained a BNN which achieved 94% accuracy using the training algo-
rithm from [9]. We down-sampled the inputs to 8× 8 images to get 64 input
nodes. We further used 5 hidden nodes and 2 output nodes. The network
was encoded into a CNF with 10, 664 variables and 41, 553 clauses. Using
riss-coprocessor to pre-process auxiliary variables, we compressed the
CNF to 3, 438 variables and 23, 254 clauses [19]. The original and compressed
CNFs are equivalent after existentially quantifying out all variables except
for the inputs/output, which is enough for the correctness of our algorithm.

– We trained a CNN which achieved 97% accuracy, using TensorFlow. The
network used the original 16×16 images, and thus had 256 input nodes. We
created two convolution layers, each with stride size 2. We first swept a 3×3
filter on the original 16× 16 image (resulting in a 7× 7 grid), followed by a
second 2×2 filter (resulting in a 3×3 grid). These outputs were the inputs of
a fully-connected layer with a single output. We encoded this network into a
CNF with 10, 547 variables and 31, 682 clauses and using riss-coprocessor,
we pre-processed the auxiliary variables to get a compressed CNF with 1, 473
variables and 11, 638 clauses [19].

Experiments were done using a single Intel Xeon CPU E5-2670 processor. We
used a time limit of one hour for each compilation. In general, we find that the
fully-connected architecture of the BNN was more challenging to compile (hence,
the reason for down-sampling the input images). In fact, when we trained a CNN
on the 8×8 inputs, we were able to compile the full network (i.e., over the space
of all images, and not just for a fixed region around a given image).

For the BNN and CNN that we trained, we identified instances classified
as digit ‘0’ (Figure 3a), and compiled the neighborhood around it using Al-
gorithms 1 and 2. The variable order we used for the OBDD is the natural
row-by-row left-to-right ordering of the pixels in the images. We used the riss

SAT solver for our experiments [19]. Table 2 (BNN) and Table 3 (CNN) shows
the compilation results for increasing values of r. We did the same for an in-
stance that is classified as digit ‘8’ (Figure 3b). We also compiled around the
neighborhood of an image that is neither a ‘0’ nor an ‘8’ (a smile, Figure 3c).
For experiments with small input spaces, we manually verified the correctness
of the OBDD through enumeration.

We make a few observations. For both the BNN and CNN, compiling larger
regions around the smile was more challenging than compiling the regions around
a digit. This is perhaps because there is less structure around an image that the
network was not trained with. Next, while we scaled to a larger radius r using
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(a) A digit 0 that is
classified as ‘0’.

(b) A digit 8 that is
classified as ‘8’.

(c) A smile which is classi-
fied as ‘8’ by the BNN and
‘0’ by the CNN.

Fig. 3: Three 16 × 16 images: digit 0, digit 8, and a smile. For each image we
compile around its r-neighborhood (the used 8× 8 images are not shown).

the BNN, the space of images was still much larger for the smaller radius that
we compiled with the CNN, since the input images were much bigger (16 × 16
for the CNN versus 8× 8 for the BNN).

The bottleneck in our experiments is the average time for a SAT query,
which is done once for each of the N equivalence queries, where N is the size,
i.e., number of nodes, of the OBDD (sizes are given in Tables 2 & 3). As the
OBDD grows, the membership queries become a bottleneck as well since the
number of membership queries is quadratic on N .

7 Case Study

In this section we perform verification queries on the convolutional neural net-
works (CNNs) that we trained and compiled in Section 6. First, we counted the
number of counterexamples. Second, we performed prime-implicant queries (PI
queries for short), which give a subset of pixels that render the remaining pixels
irrelevant for the classification [31], up to the region under consideration.3

Consider the instance visualized in Figure 3a, classified as a ‘0’ digit. For
r = 3 in Table 3, the reduced OBDD is just the constant false (⊥). This means
that there were no counterexamples in this region, and that flipping any r = 3
pixels in our image will still produce another image classified as digit ‘0’ (the false
class). Recall that an image has 256 pixels in our example, so this classification
holds for all of the 2, 796, 417 possible inputs within a radius of 3 around our
image in Figure 3a.

For r = 6, we get a reduced OBDD of size 1, 469, indicating the existence
of counterexamples. We first consider the number of assignments satisfying this

3 Ignatiev et al. [16] also subsequently proposed to use (prime) implicants to explain
the decisions made by neural networks. While they computed implicants directly, we
learned the OBDD of a neural network. Having an OBDD not only facilitates the
computation of prime implicants, but it also allows model counting to be performed
efficiently [12], which provides more powerful tools for analysis, as we shall show.
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Table 2: Compilation of a BNN on 64 variables around the r-neighborhood of
an image of a digit 0, digit 8, and a smile.

digit 0
r input space OBDD size compile time (s)

1 65 0 (⊥) < 1
2 2,081 0 (⊥) < 1
3 43,745 0 (⊥) < 1
4 679,121 0 (⊥) < 1
5 8,303,633 0 (⊥) 2
6 83,278,001 509 403
7 704,494,193 2,202 2,166

digit 8
r input space OBDD size compile time (s)

1 65 0 (>) < 1
2 2,081 0 (>) < 1
3 43,745 0 (>) < 1
4 679,121 0 (>) 2
5 8,303,633 243 111
6 83,278,001 765 584
7 704,494,193 2,431 3,168

smile
r input space OBDD size compile time (s)

1 65 0 (>) < 1
2 2,081 258 31
3 43,745 1,437 420
4 679,121 6,048 3,336

OBDD (i.e., the number of counterexamples), which can be done in time lin-
ear in the size of the OBDD. In particular, we found that 20, 413, 779 out of
the 377, 519, 940, 289 images (0.005%) were classified incorrectly as the digit ‘8.’
Hence, not only can we detect if a given instance is sensitive to perturbations
(flips of the pixels), we can also quantify how robust it is by counting how many
ways the instance can be flipped. This is in contrast to approaches to neural net-
work verification based on solving NP-complete problems, such as those relying
(just) on SAT-solvers, where counting is in general out of scope (counting is a
#P-complete problem).

Next, using the PI query, we identified a minimal set of pixels that guaranteed
a correct classification, regardless of how the other pixels are set, within a radius
of 6 of Figure 3a. The result is shown in Figure 4a. This PI query tells us about
the behavior of our CNN classifier, in the space of images around Figure 3a. In
particular, it suffices to have these particular white pixels near the border of the
image, and these black pixels in the center of the image, for the classifier to fix
its decision that the image is of a digit ‘0.’
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Table 3: Compilation of a CNN on 256 variables around the r-neighborhood of
an image of a digit 0, a digit 8, and a smile.

digit 0
r input space OBDD size compile time (s)

1 257 0 (⊥) < 1
2 32,897 0 (⊥) < 1
3 2,796,417 0 (⊥) < 1
4 177,589,057 12 2
5 8,987,138,113 220 29
6 377,519,940,289 1,469 450

digit 8
r input space OBDD size compile time (s)

1 257 0 (>) < 1
2 32,897 0 (>) < 1
3 2,796,417 0 (>) < 1
4 177,589,057 64 18
5 8,987,138,113 573 250
6 377,519,940,289 3,345 3,486

smile
r input space OBDD size compile time (s)

1 257 0 (⊥) < 1
2 32,897 8 < 1
3 2,796,417 93 7
4 177,589,057 622 138
5 8,987,138,113 3,269 1,661

We can ask the same queries for the instance visualized in Figure 3b and
classified as digit ‘8.’ For r = 3 in Table 3 (middle), the OBDD is just the
constant true (>), which means that flipping any 3 pixels of our instance will still
produce another image classified correctly as digit ‘8’ (the true class). For r = 6,
we get an OBDD of size 3, 345. Using this OBDD, we found that 181, 664, 350 out
of the 377, 519, 940, 289 images (0.05%) are classified incorrectly as the digit ‘0.’
The PI query identified the minimal set of pixels in Figure 4b which guaranteed
a correct classification regardless of how the remaining pixels are set (within a
radius of 6 of Figure 3b).

For the “smile” image in Figure 3c, the compiled OBDD for the (r = 5)-
neighborhood is larger than the corresponding OBDDs of the first two images
(see each r = 5 row in Table 3). As well, for r = 5, the PI query for the
“smile” requires 19 out of the 256 pixels to be fixed in order to guarantee a
classification, while the PI queries for the digit ‘0’ and digit ‘8’ only require 4
and 12 pixels respectively (Figure 5). This suggests that the behavior of the
BNN is less structured in the region around the image of the “smile”, possibly
because it is unclear how the image should be classified.
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(a) 12 out of 256 pixels
fixed from Figure 3a

(b) 19 out of 256 pixels
fixed from Figure 3b

Fig. 4: Prime implicant results for r = 6 for the images in Figure 3a and 3b. The
grey striped region represents ‘don’t care’ pixels. If we fix the black/white pixels
in Figure 4a, any completing image within a radius of 6 from Figure 3a must
be classified as ‘0’. If we fix the black/white pixels in Figure 4b, any completing
image within a radius of 6 from Figure 3b must be classified as ‘8’.

8 Related Work

The success of neural networks has led to the recent line of work on understand-
ing and verifying their behaviors [6, 20, 26, 28]. These works use, for example,
solvers for NP-complete problems such as Mixed-Integer Linear Programming
(MILP), satisfiability (SAT), or satisfiability modulo theory (SMT). These sys-
tems seek to verify a particular property of a neural network, or otherwise pro-
vide a counter-example. We push this line of work further by allowing one to
reason about the distribution or the characteristics of counterexamples, which is
enabled by learning the OBDD of a given neural network. These richer queries
allow us to better understand the neural network behavior beyond detecting the
presence of counterexamples.

Choi et al. [7] also consider the compilation of neural networks into a tractable
representation, and in particular, into a Sentential Decision Diagram (SDD) [8,
10].4 They focus on a different class of neural networks and take the approach of
reducing a neural network to a Boolean circuit, and then compiling the circuit
into a tractable one using classical knowledge compilation techniques. While this
approach allows a larger set of verification queries, it does not allow for local or
incremental compilation, so it may be less scalable, other things being equal.

Finally, there is also recent work on learning finite state automata from recur-
rent neural networks (RNNs) [22, 34]. Weiss et al. [34] also use an Angluin-style
approach for learning the finite state automaton of an RNN. More specifically,
their approach is based on learning the finite state automaton of an iteratively-
refined abstraction of an RNN’s state space, and hence the final automaton
learned is not necessarily equivalent to the original RNN. Koul et al. [22] trains
an RNN and then quantizes the state space using an autoencoder. The result

4 Note that SDDs are known to be exponentially more succinct than OBDDs [3].
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(a) 4 out of 256 pixels
fixed from Figure 3a

(b) 12 out of 256 pixels
fixed from Figure 3b

(c) 19 out of 256 pixels
fixed from Figure 3c

Fig. 5: Prime implicant results for r = 5 for the images shown in Figure 3. The
grey striped region represents ‘don’t care’ pixels. If we fix the black/white pixels
in Figure 5a, any completing image within a radius of 5 from Figure 3a must
be classified as ‘0’. If we fix the black/white pixels in Figure 5b, any completing
image within a radius of 5 from Figure 3b must be classified as ‘8’. If we fix the
black/white pixels in Figure 5c, any completing image within a radius of 5 from
Figure 3c must be classified as ‘8’.

is a quantized network, whose corresponding state machine can be readily ex-
tracted. Angluin-style approaches, including ours, can be viewed as instances of
program synthesis, where a program (a finite state automaton) is learned from
a specification (a neural network). For more on formal synthesis, which lies at
the increasingly important intersection of the fields of formal verification and
machine learning, see, e.g., [17, 18].

9 Conclusion

We presented new techniques for verifying the behavior of a binarized neural
network on some input region. We outlined an algorithm for compiling a BNN
into an OBDD on any input region that can be encoded efficiently as a CNF. Our
algorithm combines existing methods for CNF encodings with an Angluin-style
algorithm for learning OBDDs. The compiled OBDD gives us access to a range of
efficient verification queries and allows us to reason about counterexamples, such
as computing their probability and identifying their common characteristics.
In domains such as image classification, our approach can let users pinpoint a
specific input image I, and then reason about images that are some pixels away
from I but classified differently from I. We showed some experiments on a digits
classifier, performing verification queries and scaling to 256 inputs.
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