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Abstract

We show how to exploit tools and methods from the knowl-
edge compilation literature in order to explain the behavior
and verify the properties of neural networks. In particular, we
show how to compile neural networks into tractable Boolean
circuits to facilitate their efficient explanation and verifica-
tion. We first show how to reduce a neural network over bi-
nary inputs and step activation functions into a Boolean cir-
cuit. We then compile this Boolean circuit into a tractable one
(a core problem in the domain of knowledge compilation).
Once we obtain such a tractable Boolean circuit, the expla-
nation and verification of the original neural network can be
done efficiently, as we illustrate through a case study.

1 Introduction
Recent progress in artificial intelligence and the increased
deployment of AI systems have highlighted the need for
explaining the decisions made by such systems; see, e.g.,
(Baehrens et al. 2010; Ribeiro, Singh, and Guestrin 2016;
2018; Lipton 2018).1 For example, one may want to explain
why a classifier decided to turn down a loan application, or
rejected an applicant for an academic program, or recom-
mended surgery for a patient. Answering such why? ques-
tions is particularly central to assigning blame and respon-
sibility, which lies at the heart of legal systems and may be
required in certain contexts.2 The formal verification of AI
systems has also come into focus recently, particularly when
such systems are deployed in safety-critical applications.

We propose in this paper a knowledge compilation ap-
proach for explaining and verifying the behaviors of neu-
ral network classifiers. Knowledge compilation is a sub-field
of AI (Selman and Kautz 1996; Cadoli and Donini 1997;
Darwiche and Marquis 2002; Darwiche 2014) that studies
in part tractable Boolean circuits, and the trade-offs between
succinctness and tractability. That is, by enforcing different
properties on the structure of a Boolean circuit, one can ob-
tain greater tractability (the ability to perform certain queries

1It is now recognized that opacity, or lack of explainability is
“one of the biggest obstacles to widespread adoption of artificial
intelligence” (The Wall Street Journal, August 10, 2017).

2See, for example, the EU general data protection regulation,
which has a provision relating to explainability, https://www.
privacy-regulation.eu/en/r71.htm.

and transformations in polytime) at the possible expense of
succinctness (the size of the resulting circuits). Our goal is to
compile the Boolean function specified by a neural network
into a tractable Boolean circuit that facilitates explanation
and verification.

We consider neural networks whose inputs are binary (0
or 1) and that use step activation functions. Although such a
network would be parameterized with real-valued weights,
the network itself induces a purely Boolean function. We
seek a tractable Boolean circuit that represents this Boolean
function, which we propose to obtain in two steps.

For the first step, we observe that neurons with step ac-
tivation functions have binary inputs and a binary output.
Hence, each neuron induces its own Boolean function. Us-
ing the algorithm of (Chan and Darwiche 2003), we obtain
a tractable circuit for a given neuron’s Boolean function.
Given the Boolean circuits of its neurons, a neural network
then induces its own Boolean circuit, although not neces-
sarily a tractable one. For the second step, we compile this
circuit into a tractable one by enforcing additional properties
on the circuit until operations of interest become tractable, as
is commonly done in the domain of knowledge compilation.
We finally explain the decisions and verify the properties of
this tractable circuit using the techniques in (Shih, Choi, and
Darwiche 2018b; 2018a).

This paper is organized as follows. In Section 2 we re-
view relevant background material. In Section 3 we show
how to reduce neural networks to Boolean circuits by com-
piling each neuron into a Boolean circuit. In Section 4 we
discuss how to obtain tractable circuits, via knowledge com-
pilation. We provide a case study in Section 5, review related
work in Section 6, and finally conclude in Section 7.

2 Technical Preliminaries
A feedforward neural network is a directed acyclic graph
(DAG); see Figure 1a. The roots of the DAG are the neu-
ral network inputs, call them X1, . . . , Xn. The leaves of the
DAG are the neural network outputs, call them Y1, . . . , Ym.
Each node in the DAG is called a neuron and contains an ac-
tivation function σ; see Figure 1b. Each edge I in the DAG
has a weight w attached to it. The weights of a neural net-
work are its parameters, which are learned from data.

In this paper, we assume that the network inputs Xi are
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(b) A mathematical model of a neuron
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Figure 1: A neural network, a neuron, and two activation
functions. A sigmoid σ(x) = 1

1+exp{−x} acts as a soft
threshold which tends to 0 as x goes to −∞ and tends to
1 as x goes to∞. A ReLU σ(x) = max(0, x) is equal to 0
if x < 0 and is equal to x otherwise.

either 0 or 1. We further assume step activation functions:

σ(x) =

{
1 if x ≥ 0
0 otherwise

A neuron with a step activation function has outputs that are
also 0 or 1. If the network inputs are also 0 or 1, then this
means that the inputs to all neurons are 0 or 1. Moreover,
the output of the neural network is also 0 or 1. Hence, each
neuron and the network itself can be viewed as a function
mapping binary inputs to a binary output, i.e., a Boolean
function. For each neuron, we shall simply refer to this func-
tion as the neuron’s Boolean function. When there is a single
output Y , we will simply refer to the corresponding function
as the network’s Boolean function.

3 From Neural Networks to Boolean Circuits
Consider a neuron with step activation function σ, inputs Ii,
weights wi and bias b. The output of this neuron is simply

σ(
∑
i

wi · Ii + b) =

{
1 if

∑
i wi · Ii + b ≥ 0

0 otherwise (1)
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Figure 2: An OBDD and circuit representation of a neuron
σ(A+B − C − 1) with step activation σ.

As an example, consider a neuron with 3 inputs A,B and C
with weights w1 = 1.15, w2 = 0.95 and w3 = −1.05 and a
bias of −0.52. This neuron outputs 1 iff:

1.15 ·A+ 0.95 ·B − 1.05 · C ≥ 0.52

Treating a value of 1 as true and a value of 0 as false,
we can view this neuron as a Boolean function f(A,B,C)
whose output matches that of the neuron, on inputsA,B and
C. Figure 2 highlights two logically equivalent representa-
tions of this neuron’s Boolean function. Figure 2a highlights
an Ordered Binary Decision Diagram (OBDD) representa-
tion3 and Figure 2b highlights a circuit representation. These
functions are equivalent to the sentence:

[¬C ∧ (A ∨B)] ∨ [C ∧A ∧B],

i.e., if C is 0 then A or B must be 1 to meet or surpass the
threshold (≥ 0), and if C is 1 then both A and B must be 1.

OBDDs, as in Figure 2a, are tractable representations—
they support many operations in time polynomial (and typi-
cally linear) in the size of the OBDD (Bryant 1986; Meinel
and Theobald 1998; Wegener 2000). Circuits, as in Fig-
ure 2b, are not in general tractable as OBDDs, although we
will later seek to obtain tractable circuits through knowledge
compilation, a subject which we will revisit in more depth in

3An Ordered Binary Decision Diagram (OBDD) is a rooted
DAG with two sinks: the 1-sink and 0-sink. An OBDD is a
graphical representation of a Boolean function on variables X =
{X1, . . . , Xn}. Every OBDD node (except the sinks) is labeled
with a variable Xi and has two labeled outgoing edges: the 1-edge
and the 0-edge. The labeling of the OBDD nodes respects some
global ordering of the variables X: if there is an edge from a node
labeled Xi to a node labeled Xj , then Xi must come before Xj in
the global ordering. To evaluate the OBDD on an instance x, start
at the root node of the OBDD and let xi be the value of variable
Xi that labels the current node. Repeatedly follow the xi-edge of
the current node, until a sink node is reached. Reaching the 1-sink
means x is evaluated to 1 and reaching the 0-sink means x is eval-
uated to 0 by the OBDD.



Section 4. Note further that OBDDs are also circuits that are
notated more compactly.4

Our goal now is to obtain a tractable circuit representa-
tion of a given neuron. First, consider the following class of
threshold-based linear classifiers.

Definition 1 Let X be a set of binary features where each
feature X in X has a value x ∈ {0, 1}. Let x denote an
instantiation of variables X. Consider functions f that map
instantiations x to a value in {0, 1}. We call f a linear clas-
sifier if it has the following form:

f(x) =

{
1 if

∑
x∈x wx · x ≥ T

0 otherwise (2)

where T is a threshold, x ∈ x is the value of variable X
in instantiation x, and where wx is the real-valued weight
associated with value x of variable X .

Note that such classifiers are also Boolean functions. The
following result, due to (Chan and Darwiche 2003), gives us
a way of obtaining a tractable circuit representing a classi-
fier’s Boolean function.

Theorem 1 A linear classifier in the form of Equation 2 can
be represented by an OBDD of sizeO(2

n
2 ) nodes, which can

be computed in O(n2
n
2 ) time.

(Chan and Darwiche 2003) provided an algorithm to obtain
the result of Theorem 1, which has a much better average
complexity than may be suggested by the bounds in the the-
orem. This algorithm was originally designed for compil-
ing naive Bayes classifiers to Ordered Decision Diagrams
(ODDs), but it applies to any classifier of the form given by
Equation 2. This includes naive Bayes classifiers, but also
logistic regression classifiers, as well as neurons with step
activation functions; see also (Elkan 1997).

For completeness, we show next how a neuron with a step
activation can be reduced to a naive Bayes classifier.

Proposition 1 Consider a neuron with a step activation
function σ, as in Equation 1. Let f denote the neuron’s
Boolean function. Consider the corresponding naive Bayes
classifier, with binary attributes Ii (with values 0 and 1), and
a class variable O (with values 0 and 1), with the CPTs:

θO=1 =
exp{τ}

1 + exp{τ} θI=1|O=1 =
1

1 + exp{− 1
2wi}

τ = b+
1

2

∑
i

wi θI=1|O=0 =
1

1 + exp{ 12wi}

Given any input x, we have f(x) = 1 iff Pr(O=1 | x) ≥ 1
2 .

The proof of this theorem is provided in the Appendix.
Now that we can compile each neuron into a (tractable)

Boolean circuit, the whole neural network will then induce
a Boolean circuit as illustrated in Figure 3. That is, for the
given neural network in Figure 3a, each neuron is compiled
into a Boolean circuit as in Figure 3b. The circuits for neu-
rons are then connected according to the neural network

4An OBDD node labeled by variable X and with children fx
and fx̄ is equivalent to the circuit fragment (x ∧ fx) ∨ (x̄ ∧ fx̄).
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Figure 3: A neural network, the circuit of a single neuron,
and the circuit of the original network. Wires highlighted in
red and blue correspond to the inputs A and B, respectively.

structure, leading to the Boolean circuit in Figure 3c, where
the circuit of each neuron is portrayed as a block.

Using the algorithm of (Chan and Darwiche 2003), the
Boolean circuit that we obtain from a neuron is tractable.
The circuit that the neurons induce as a neural network is
not necessarily tractable. However, the explanation and ver-
ification techniques proposed in (Shih, Choi, and Darwiche
2018b; 2018a), which we shall use, require a tractable cir-
cuit. We will next show how to obtain such a circuit using
techniques from the literature on knowledge compilation.

4 Tractability via Knowledge Compilation
In this section, we provide a short introduction to the do-
main of knowledge compilation, and then show how we can
compile a neural network into a tractable Boolean circuit.

We mostly follow the conventions of (Darwiche and Mar-
quis 2002), which considers tractable representations of
Boolean circuits, and the trade-offs between succinctness
and tractability. In particular, they consider Boolean circuits
of and-gates, or-gates and inverters, but where inverters only
appear at the inputs (hence the inputs of the circuit are vari-
ables or their negations). This sub-class of circuits is called
Negation Normal Form (NNF) circuits. Any circuit with
and-gates, or-gates and inverters can be efficiently converted
into an NNF circuit while at most doubling its size.

By imposing properties on the structure of NNF circuits,
one can obtain greater tractability (the ability to perform cer-
tain operations in polytime) at the possible expense of suc-
cinctness (the size of the resulting circuit). To help moti-
vate this trade-off, consider Figure 4, which highlights the
containment relationship between four complexity classes.
The “easiest” (smallest) class is NP , and the “hardest”
(largest) class is PPPP (Oztok, Choi, and Darwiche 2016).
The canonical problems that are complete for each class all
correspond to queries on Boolean expressions. One popu-
lar computational paradigm for solving problems in these
classes is to reduce them to the canonical problem com-
plete for that class, and to compile the resulting Boolean
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Figure 4: Containment of four complexity classes: NP ⊆
PP ⊆ NPPP ⊆ PPPP. The canonical problem that is com-
plete for that class is labeled in blue.

expressions to Boolean circuits with the appropriate prop-
erties.5 For example, (Oztok, Choi, and Darwiche 2016)
shows how to solve PPPP-complete problems by reduc-
tion to MajMajSAT queries on a specific tractable class of
Boolean circuits.

Consider now a property on NNF circuits called decom-
posability (Darwiche 2001a). This property asserts that the
sub-circuits feeding into an and-gate cannot share variables.
An NNF circuit that is decomposable is said to be in De-
composable Negation Normal Form (DNNF). In a DNNF
circuit, testing whether the circuit is satisfiable can be done
in time linear in the size of the circuit. Another such prop-
erty is determinism (Darwiche 2001b). This property asserts
that for each or-gate, if the or-gate outputs 1 then exactly one
of its input is 1. A DNNF circuit that is also deterministic is
called a d-DNNF. The circuit in Figure 2b is an example of a
d-DNNF circuit. In a d-DNNF circuit, counting the number
of assignments that satisfy the circuit can be done in time
linear in the size of the circuit, assuming the circuit also sat-
isfies smoothness (Darwiche 2003).6 Hence, with these first
two properties, we can solve the canonical problems in the
two “easiest” classes illustrated in Figure 4.

A more recently proposed class of circuits is the Senten-
tial Decision Diagram (SDD) (Darwiche 2011; Xue, Choi,
and Darwiche 2012). SDDs are a subclass of d-DNNF cir-
cuits that assert a stronger form of decomposability, and a
stronger form of determinism. SDDs subsume OBDDs and
are exponentially more succinct than OBDDs (Bova 2016).
SDDs support polytime conjunction and disjunction. That
is, given two SDDs α and β, there is a polytime algorithm
to construct another SDD γ that represents α ∧ β or α ∨ β.7

5For a video tutorial on this paradigm, “On the role of logic
in probabilistic inference and machine learning,” see https://
www.youtube.com/watch?v=xRxP2Wj4kuA

6Counting how many assignments satisfy a given circuit allows
us to tell whether a majority of them satisfy the circuit (MajSAT).

7If s and t are the sizes of input SDDs, then conjoining or dis-
joining the SDDs takes O(s · t) time, although the resulting SDD
may not be compressed (Van den Broeck and Darwiche 2015).

Figure 5: A tall rectangle (left) and wide rectangle (right).
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Figure 6: Architecture of the neural network analyzed.

Further, SDDs can be negated in linear time.8
These polytime operations allow a simple algorithm for

compiling a Boolean circuit with and-gates, or-gates and in-
verters into an SDD. We first obtain an SDD for each circuit
input. We then traverse the circuit bottom-up, compiling the
output of each visited gate into an SDD by applying the cor-
responding operation to the SDDs of the gate’s inputs.9

SAT and MajSAT can be solved in linear time on SDDs.
Further properties on SDDs allow the problems E-MajSAT
and MajMajSAT, the two hardest problems illustrated in Fig-
ure 4, to be also solved in time linear in the size of the SDD
(Oztok, Choi, and Darwiche 2016). In our experiments, we
compiled the Boolean circuits of neural networks into stan-
dard SDDs as this was sufficient for efficiently supporting
the explanation and verification queries we are interested in.

5 A Case Study
We next provide a case study in explaining and verifying
neural networks via knowledge compilation. We consider a

8The SDD package at http://reasoning.cs.ucla.
edu/sdd/ provides support for these operations, which we used
in our case study in Section 5.

9In our experiments, we employed an alternative algorithm for
compiling a circuit into an SDD. First, using the algorithm of (Chan
and Darwiche 2003) as discussed earlier, for each neuron n we
compile its Boolean function into an OBDD fn. Next, we associate
an auxiliary variable Zn to the output of each neuron n. For each
neuron, we assert the following equivalence constraint equatingZn

with fn: Zn ⇔ fn where α⇔ β ≡ (α∧β)∨(¬α∧¬β). We then
conjoin the equivalence constraints over all neurons:

∧
n(Zn ⇔

fn). Finally, we existentially quantify out the auxiliary variables
Zn and condition on output node Y . We then obtain a circuit over
just the network inputs X, which is logically equivalent to the com-
piled circuit described in the main text.
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Figure 7: A visualization (using marginals) of the 3 neurons
in the hidden layer.

synthetic image classification task: discriminating between
tall and wide rectangles. We synthesize a binary dataset of
5×5 images containing either a tall rectangle (height greater
than width) or a wide rectangle (width greater than height).
Figure 5 depicts a tall rectangle with a height of 5 and a
width of 3, and a wide rectangle with a height of 3 and a
width of 4. White pixels represent the border of the rectan-
gle; all other pixels are black. Each rectangle has a top and
bottom row, and a left and right column, which are chosen
randomly, but guaranteeing a height and width of at least 2
pixels. We give tall rectangles a 1-label (positive instance)
and wide rectangles a 0-label (negative instance). Squares
(equal height and width) are given 1-labels. In a 5 × 5 grid,
there are 100 unique rectangles.

We trained a simple two-layer feedforward neural net-
work using TensorFlow; see Figure 6. We assumed 3 nodes
in the hidden layer, and minimized a cross entropy loss us-
ing the Adam optimizer with a learning rate of 0.1, for 500
epochs. We sought a neural network that facilitated explana-
tion and verification (as we shall see shortly). Hence, we use
all 100 unique examples for training, and trained with dif-
ferent seeds until we obtained a simple network with 100%
training set accuracy.10 To compile a neuron to an OBDD,
using the algorithm of (Chan and Darwiche 2003), we need
to assume step activations. However, the step activation
function is not differentiable at zero, and has a zero deriva-
tive everywhere else. In practice, one can train the network
with sigmoid activations and then assume step activations
at test time. We do the same here. Further, when using step
activations, we also achieved 100% accuracy on the train-
ing set. After compiling all neurons to OBDDs/SDDs, the
neural network’s circuit had an (aggregate) size of 15,073,
although it is not yet tractable.11 After compiling this circuit
to a tractable circuit, i.e., an SDD, as described in the previ-
ous section, the circuit size was 92,998 (the increased size is
the trade-off for obtaining tractability).

Interpreting Neurons via Model Counting: In the pro-
cess of compiling a neural network into a tractable circuit

10A neural network with just 3 nodes in the hidden layer can
obtain 100% training accuracy without “memorizing” the dataset.
As we shall see in this case study, we can analyze the network
and verify that it is learning some more general properties of the
dataset. Note further that not all neural networks that we learned
from this dataset were as clear as the one that we analyze here.

11The size of an SDD node is the number of its children. The
size of an SDD is the aggregate size of its nodes.

(an SDD), we also compile each neuron into a tractable cir-
cuit, as a function of the network’s inputs. Hence, we first
propose an approach for interpreting each neuron using its
tractable circuit, through a visual analysis. Consider the fol-
lowing question: Of all network inputs that cause a neuron
to fire (i.e., has output 1), what proportion of them set in-
put Xi to 1? Or in other words, given that the circuit output
is 1 what is the marginal probability that the input Xi is 1
(assuming a uniform distribution over inputs)? By visualiz-
ing these marginals across all pixels, this gives us a sense of
what types of inputs will cause a neuron n to fire. Given an
SDD, we can answer the proposed question through model
counting.12 The model count tells us how many input vec-
tors will cause a high output to a circuit. Given an SDD, its
model count can be computed in time linear in the size of
the circuit. Note that model counting is a query that is be-
yond the capabilities of approaches to verification based on
satisfiability (model counting is a #P-complete problem); we
discuss this point further in Section 6.

Figure 7 depicts the marginals for each neuron in the hid-
den layer of the neural network that we learned. Red pixels
correspond to marginals greater than 1

2 , and redder pixels are
closer to one. Blue pixels correspond to marginals less than
1
2 , and bluer pixels are closer to zero. Consider for example
Figures 7a & 7b. Given that the first neuron fired, it is highly
probable that pixels on the second row were white and that
the pixels on the fourth row were black. Similarly, for the
second neuron, except that the role of the rows are swapped.
One or both neurons will fire on wide rectangles, depending
on the alignment of its horizontal borders. The third neuron
in Figure 7c would also tend to fire on wide rectangles that
have a border on the middle row, although its behavior is a
bit more subtle, as we shall discuss shortly.

Consider the output neuron. By examining its Boolean
function, we can explain the behavior of the neural network
as a function of the neurons in its hidden layer. The output
neuron has the following form:
(−14.225 ·A) + (−13.573 ·B) + (6.421 · C) + 1.186 ≥ 0

where inputs A, B and C are the outputs of the three neu-
rons in the hidden layer. We see that the first and second
neurons contribute negatively to the decision of a tall rect-
angle, while the third neuron surprisingly has a positive im-
pact. In fact, all tall rectangles in the dataset cause the third
neuron to fire.13 However, we find that the third neuron has
no role on the output of the neural network. If we consider
the SDD circuit of the output neuron, and the logical ex-
pression that it represents, we see that it fires iff ¬A ∧ ¬B.

12Let ∆n be the SDD representing neuron n. The model count
of ∆n is the number of its satisfying assignments, i.e., the number
of inputs leading to a high output. If mc(∆n) is the model count of
∆n, and mc(Xi ∧∆n) is the model count of ∆n when Xi is set to
1, then Pr∆n(Xi) = mc(Xi ∧∆n)/mc(∆n) is the proportion of
the models of ∆n where Xi is set to 1.

13To see why, consider Figure 7c. When this neuron fires, the
pixels in the middle row are likely to be white. However, consider
the fact that the minimum width of a rectangle is two, and so the
minimum height of a tall rectangle must be three. Since our images
are 5 × 5 pixels, any tall rectangle must cross at least two pixels
from the middle row, hence causing this neuron to fire.



That is, an image is classified as a tall rectangle iff the first
two neurons do not fire. Equivalently, an image is classified
as a wide rectangle iff at least one of the first two neurons
fire. More importantly, we see that the neural network’s out-
put is independent of the third neuron, and hence it can be
dropped without affecting the behavior of the network. That
is, to discriminate between tall and wide rectangles, it suf-
fices to consider just the first two neurons. Note that detect-
ing unused inputs in a circuit is another efficient operation
on tractable circuits (Shih, Choi, and Darwiche 2018a).14 As
our case study highlights, tractable circuits lend themselves
to pruning neural networks as well (i.e., to optimize their
structure for memory and speed).

Explaining a Decision: Next, we consider how to explain
why a neural network classified a given instance positively
or negatively. In particular, we consider prime implicant ex-
planations (PI-explanations), as proposed by (Shih, Choi,
and Darwiche 2018b). Say that input image x is classified
positively, i.e., a tall rectangle. A PI-explanation returns the
shortest subset y of the inputs in x that render the remain-
ing inputs irrelevant. That is, once you fix the pixel values
y, the values of the over pixels do not matter—the network
will always classify the instance as a tall rectangle.

First, consider the correctly classified tall rectangle in Fig-
ure 8a, and its PI-explanation in Figure 8b. For the neural
network to classify this image as a tall rectangle, it suffices
to see white pixels on three of its corners, and a few black
pixels on both sides—the other pixel values do not matter.
With the settings of these pixels, any completion to a rect-
angle will result in one that has a width of at most 3 and a
height of at least 4. In Figure 8c & 8d, we see another tall
rectangle and its PI-explanation. We can make similar ob-
servations here (remember that squares are included in the
tall class).

Figures 8e & 8f and Figures 8g & 8h consider two wide
rectangles and their PI-explanations. This time, consider the
PI-explanation in Figure 8f and the visualization of the neu-
ron in Figure 7b, which is replicated in Figure 8j. We see
that the pixels set to white and black by the PI-explanation
are also likely to be set to white and black when the sec-
ond neuron of the hidden layer fires. Further, we know that
the network predicts a rectangle iff at least one of the first
two neurons fire. From this, we can infer that the rectan-
gle in Figure 8e is being classified as wide because the PI-
explanation of Figure 8f is forcing the second neuron to fire.
We can infer similarly that the rectangle in Figure 8g is being
classified as wide because the PI-explanation of Figure 8h is
forcing the first neuron of Figure 7a (and 8i) to fire.

Interpreting the Neural Network Output: Figure 9a
highlights the marginals of the output neuron, i.e., the prob-
ability that each pixel is white given that the output of the
network is “tall.” A renormalized version is given in Fig-
ure 9h. Perhaps not surprisingly, we find that if the output of
the neural network is high, then it is somewhat more likely

14In general, determining whether the input of a neuron is un-
used is an NP-hard problem. This can be shown using a reduction
similar to (Shih, Choi, and Darwiche 2018b), which showed that
compiling a naive Bayes classifier is an NP-hard problem.

(a) tall rectangle (b) PI-explanation

(c) tall rectangle (d) PI-explanation

(e) wide rectangle (f) PI-explanation

(g) wide rectangle (h) PI-explanation

(i) neuron 1 (j) neuron 2 (k) neuron 3

Figure 8: Two correctly classified tall rectangles (8a & 8c),
and two correctly classified wide rectangles (8e & 8g). For
convenience, we replicate the visualizations of the hidden
neurons of Figure 7 (8i-8k).



that the three central pixels in the top and bottom rows are
set to white. Further, the three central pixels in the left and
right columns are somewhat more likely to be set to black.
These are properties suggestive of a tall rectangle. Next, we
shall take a closer look at the behavior of the neural network.

Consider again the PI-explanation of a wide rectangle in
Figure 8f. In Figure 9b through Figure 9g, we consider the
conditional probability of each input pixel being white given
that we incrementally set the pixels of the PI-explanation.
We want to observe how the neural network reacts in this
case: the more pixels of the PI-explanation that we set, the
more difficult it is for the neural network to predict a tall
rectangle. Remember, that if we set all pixels of this PI-
explanation, then the neural network can no longer predict
“tall.” Hence, we do not show the result of setting the full
PI-explanation.

First, in Figure 9b, we have set a single pixel of the PI-
explanation. The resulting conditional probabilities resem-
ble the original marginals of Figure 9a. As we set more pix-
els of the PI-explanation, we see the conditional probabili-
ties becoming more extreme. As we move right in Figure 9,
the marginals more strongly resemble an inverted version
of Figure 7b (replicated in Figure 9j), which visualized the
marginals of the second neuron. Remember that in this net-
work, to classify an input image as a tall rectangle, neither
the first nor the second neuron of Figure 7 are allowed to fire.
We see this reflected in Figure 9: as we move left-to-right,
in order to keep classifying the input image as tall, we have
to do more to prevent the second neuron from firing (i.e., set
more inputs that keep the neuron below its threshold).

We emphasize a few points now. First, this (visual) analy-
sis is enabled by the tractability of the circuit, which allows
model counts and marginals to be computed efficiently. Sec-
ond, the analysis also emphasizes that the neural network
is not learning “rectangles,” per se. It learned some proper-
ties of rectangles (i.e., the first two neurons of the hidden
layer), that allowed the network to classify them with 100%
accuracy. This perhaps explains why it is sometimes easy to
“fool” neural networks (e.g., in Figure 9g, it is still possible
for the neural network to classify some of its input as tall,
even though it is no longer possible to extend the 6 pixels
already set to a tall rectangle). Finally, while our case study
concerned a very small neural network by today’s standards,
our findings clearly show the promise of the proposed direc-
tion of research as it gives a sense of the insights one can
gain by compiling the Boolean functions of neural networks
intro tractable circuit representations. Scaling this compila-
tion approach to more realistic neural networks is a current
focus of ours.

6 Related Work
Our approach follows a recent trend in analyzing machine
learning models using symbolic approaches such as satis-
fiability (SAT) and satisfiability modulo theory (SMT); see,
e.g., (Katz et al. 2017; Leofante et al. 2018; Narodytska et al.
2018; Cheng et al. 2018; Shih, Choi, and Darwiche 2018b;
Ignatiev, Narodytska, and Marques-Silva 2019). While ma-
chine learning and statistical methods are key for learning
classifiers, it is evident that symbolic and logical approaches,

which are independent of any of the models parameters, are
key for analyzing and reasoning about them. Our approach,
based on compilation into a tractable Boolean circuit, is ca-
pable of going beyond queries based on (for example) satis-
fiability (NP–complete) and equivalence checking (co-NP–
complete), to problems beyond NP such as model count-
ing, MajSAT and MajMajSAT (Oztok, Choi, and Darwiche
2016; Choi, Darwiche, and Van den Broeck 2017). Access
to such queries can provide more sophisticated approaches
to explanation and verification.

In parallel with this paper, (Shih, Choi, and Darwiche
2019) propose another knowledge compilation approach for
verifying neural networks. In particular, their approach is
based on learning the OBDD of a neural network’s Boolean
function. The approach is based on algorithms for learning
deterministic finite state automata (dfsa) (Angluin 1987), us-
ing membership and equivalence queries that are made to an
oracle. In this case, membership queries can be made on the
original neural network. Equivalence queries (between the
original neural network and the candidate learned model)
can be made by reducing both the neural network and candi-
date OBDD to a joint CNF instance, where a SAT solver can
now be used to test equivalence (Narodytska et al. 2018).
There are a number of differences with this work. First,
they consider a different class of neural networks called
Binarized Neural Networks (BNNs) (Hubara et al. 2016;
Narodytska et al. 2018).15 Next, our approach to compila-
tion targets the more general class of SDDs, is conceptually
simpler, and also more general. On the other hand, (Shih,
Choi, and Darwiche 2019) inherits certain guarantees from
the original dfsa learning algorithm.16 Finally, the approach
proposed by (Shih, Choi, and Darwiche 2019) is concerned
with compiling the function of a neural network in a region
“around” a given instance, whereas our approach seeks to
compile the whole Boolean function of a neural network.
While a region-based approach restricts the types analyses
that are possible (explanation and verification), it can be
more scalable if the region is small enough.

7 Conclusion
In this paper, we proposed a knowledge compilation ap-
proach for explaining and verifying the behavior of a neural
network. We considered in particular neural networks with
0/1 inputs and step activation functions. Such networks have
neurons that correspond to Boolean functions. The network
itself also corresponds to a Boolean function, which repre-
sents how a neural network labels an input feature vector
with a class. We showed how to compile the Boolean func-
tion of each neuron and the network itself into a tractable
circuit, and into an Sentential Decision Diagram (SDD) in
particular. In a case study, we showed how polytime queries
supported by the SDD can be utilized to efficiently explain
and verify the behavior of neural networks.

15The “binarized” in a BNN refers to its binary parameters and
activations, and not just binary inputs like we assume in this paper.

16In particular, the algorithm requires a number of equivalence
queries that is linear in the size of the output OBDD, where equiv-
alence checking is the primary bottleneck of the procedure.



(a) output neuron (b) fixed 1 (c) fixed 2 (d) fixed 3 (e) fixed 4 (f) fixed 5 (g) fixed 6

(h) output neuron (renormalized) (i) neuron 1 (j) neuron 2 (k) neuron 3

Figure 9: A visualization of the output neuron (9a), and after conditioning on the pixels of the PI-explanation of Figure 8f, one
pixel at a time from left-to-right (9b–9g). The fixed pixels are outlined in green. A renormalized visualization of the output
is given in 9h (the magnitudes of the probabilities are rescaled to be closer to 0 and 1). For convenience, we replicate the
visualizations of the hidden neurons of Figure 7 (9i-9k).
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A Proofs
Proof of Proposition 1 Let i denote an input vector. Given
activation function σ a neuron first computes:∑

i

wi · Ii + b = b+
∑
i

wi · Ii + 0 · (1− Ii)

= b+
∑
i

1

2
wi · Ii −

1

2
wi · (1− Ii) +

1

2
wi

=

(
b+

1

2

∑
i

wi

)
+
∑
i

1

2
wi · Ii −

1

2
wi · (1− Ii)

We then have the log-odds:

log
Pr(O=1 | i)
Pr(O=0 | i) = log

Pr(O=1)

Pr(O=0)

Pr(i | O=1)

Pr(i | O=0)

= log
Pr(O=1)

Pr(O=0)
+
∑
i

log
Pr(Ii | O=1)

Pr(Ii | O=0)

If Ii=1 then

log
Pr(Ii=1 | O=1)

Pr(Ii=1 | O=0)
= log

1 + exp{ 12wi}
1 + exp{− 1

2wi}

= log
exp{ 12wi} · (1 + exp{ 12wi})

1 + exp{ 12wi}
=

1

2
wi.

If Ii=0 then

log
Pr(Ii=0 | O=1)

Pr(Ii=0 | O=0)

= log
exp{− 1

2wi}
exp{ 12wi}

1 + exp{ 12wi}
1 + exp{− 1

2wi}
= −1

2
wi.

Further, log Pr(O=1)
Pr(O=0) = log exp{τ} = τ and hence,

log
Pr(O=1 | i)
Pr(O=0 | i) = τ +

∑
i

1

2
wi · Ii −

1

2
wi · (1− Ii).

Thus,
∑

i wi · Ii + b ≥ 0 iff log Pr(O=1|i)
Pr(O=0|i) ≥ 0. �
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